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Abstract

In this paper a thermodynamic constitutive model is developed for stress induced phase transformation in single
crystalline and polycrystalline shape memory alloys (SMAs). Volume fractions of different martensite variants are
chosen as internal variables to describe the evolution of microstructure state in the material. This model is then used in
prediction the transformation behavior of a SMA (Cu—Al-Zn—Mn) under complex thermomechanical load (including
complete and incomplete transformation in mechanical cycling, and proportional/non-proportional loading). © 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

As a new type of functional material, shape memory alloy (SMA) has been exploited to be used in
various applications (Funakubo, 1987). However, compared with other traditional materials, current re-
search on the constitutive relation of SMAs is still far away from well established. In particular, the
themomechanical behaviors described in the (6, €, T) space under complex load is still under investigation.
Related topics include the behavior under mechanical and thermal cyclic load, non-proportional load and
the effects of loading history. In order to provide a robust tool for engineers, much attention has been
attracted to SMA modeling in recent years. According to Boyd and Lagoudas (1996), previews models in
the literature may be classified into two categories: two-component phenomenological model (e.g. Sun and
Hwang, 1993), and three-component phenomenological model (e.g. Raniecke and Lexcellent, 1994; Lecl-
ercq and Lexcellent, 1996). In two-component phenomenological model, two phases, austenite and mar-
tensite, are considered. In three-component phenomenological model, martensite is further divided into
self-accommodated (twinned) martensite and non-self-accommodated (detwinned) martensite. In order to
establish the constitutive model, two assumptions are made in both types of models:
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Nomenclature P; orientation tensor of pure shear
Oijk number of kth type of LCVs in volume
A coefficient of interaction energy Vi
Ay boundary of RVE R total number of orientation compo-
Ag austenite finish temperature nents
As austenite start temperature T reference temperature
Ay boundary of jth grain with orientation i T phase equilibrium temperature
A boundary of ¥ u microscopic specific internal energy
b, shear vector of HPV Uo free energy at temperature 7
Ci volume fraction of all crystals with Uikl specific internal energy in volume V;,
orientation ith in RVE U macroscopic specific internal energy
Cy specific heat V volume of RVE
E, elastic modulus V; volume of all grains with orientation i
e microscopic total strain Vi volume of jth grain with orientation i
e microscopic elastic strain Vit volume of /th martensite crystal with
€kl microscopic total strain in volume ¥, kth type of LCVs in volume v;;
€ microscopic elastic strain in volume ¥, Wy volume of all LCVs belong to kth group
macroscopic total strain of orientation i
E° macroscopic elastic strain Zik volume fraction of kth group with ori-
E" macroscopic  phase transformation entation I
strain z volume fraction of Habit Plane Vari-
E; phase transformation eigenstrain of kth ants
type of LCV with orientation i
E; Phase transformation eigenstrain of Greeks
HPV € volume deformation of HPV
A internal energy due to internal stress gt microscopic eigenstrain of phase trans-
field oy, formation
I internal energy in grains with orienta- ¢ microscopic elastic energy
tion i P macroscopic elastic energy
F surface force on 4 Gijna elastic energy in volume V;y
g magnitude of pure shear in HPV n microscopic specific entropy
G specific Gibbs free energy n* specific local entropy production
Gy shear modulus A material constants to describe harden-
H total number of HPVs in single crystal ing behavior
ho entropy at temperature 7 I material constants to describe interac-
L elastic module tensor tion among HPVs
m;; direction of pure shear in HPV Vii stoichiometric coefficient for forward
M martensite finish temperature phase transformation
M; total number of grains with orientation Ei driving force corresponding to z
i ; driving force corresponding to z;,
M martensite start temperature IS critical driving force for forward trans-
M elastic compliance tensor formation
n number of martensite LCV 5 critical driving force for reverse trans-
n normal direction of A4, formation
n; normal direction of Habit plane 11, minimum Hf,*
N number of grain orientation oF equivalent pressure in HPV
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I microscopic mass density Tit resolved shear stress in HPV
0, macroscopic mass density of RVE { macroscopic specific entropy
il microscopic stress in volume Vj;
Gint internal stress caused by eigenstrain of Superscript

phase transformation A austenite
X macroscopic stress M martensite

(1) The direction of strain rate is the same as that of devoatoric stress. In the construction of free energy
expression, this assumption is only true for proportional loading case.

(2) A thermodynamic dissipation potential function is postulated in construction the formula for evolu-
tion of phase transformation.

It is also noticed that in practice it is very hard to distinguish twinned martensite and detwinned martensite.
In fact, it is the particular martensite variant, which has the most favorable orientation by local stress field,
growing at the cost of other variants. Martensite variants with different orientation play an important role
in both forward and reverse transformations. So it should be more accurate if different martensite variants
are introduced as internal variables in modeling. Liang et al. (1995) has applied orientation component
method in investigation the constitutive theory of SMAs. Later, this method was used in a submicroscopic
elasto-plastic model for polycrystalline metals (Liang et al., 1998).

On the other hand, previews models, such as Boyd and Lagoudas (1996), Huang and Brinson (1998),
appear to be complete and ideal theoretically. However most of the numerical simulations used for veri-
fication are simple loading case. Applying these models in non-proportional case, for instance, tests re-
ported by Sittner et al. (1995), could be very complex.

In this paper, based on the thermodynamic theory of continuum, the macroscopic Gibbs free energy is
derived from n + 1 microscopic potential wells (» martensite variants plus one for austenite), and the
thermodynamical force that corresponds to the volume fraction variation of martensite variant is derived.
Nucleation criterion and evolution equation for phase transition process are proposed based on the ob-
servation in single martensite variant experiment reported by Huo and Miiller (1993). An orientation
component model is established for isotropic polycrystalline SMA. This model is then used in the simu-
lation of a Cu-Al-Zn—Mn polycrystalline SMA round tube subjecting to complex loads and non-pro-
portional loads tested by Sittner et al. (1995).

2. Model for phase transformation in SMA

Martensitic transformation is first order transformation from solid to solid. Macroscopically, such
transformation results in phase transition, such as pseudoelasticity and shape memory effect, etc. Micro-
scopically, phase transformation turns one austenite into mixture phase of autensite and martensite first,
and pure martensite in the end. As the symmetry of autensite is of higher order than that of martensite, a
group of martensite variants may be generated from one austenite. The resulting single martensite crystal is

[T 2] [T3% 2}

martensite lattice correspondence ! variant (LCV). In terms of free energy, “n” number of LCVs forms “n

' A lattice correspondence is a unique relationship between the initial (austenite) and final (martensite) lattices.
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Fig. 1. Scale illustration. The gray areas in the middle figure stand for grains with same orientation in austenite. The black areas in right
figure represent martensite with the same type of lattice corresponding variant.

potential wells. Plus one for austenite, “n + 17 potential wells exist in SMA. Although microscopically
deformation may not be continuous everywhere, displacement is continuous. Hadamard jump condition
becomes internal geometrical restraint. To satisfy this, interface between martensite LCVs must be twinned
plane, while interphase between austenite and martensite must be habit plane (refer to Ball and James,
1987; Bhattacharya, 1992). On the martensite side of habit plane it is martensite habit plane variant (HPV).
It is well known that HPV is not always the minimum subunit that composes the bulk martensite. In some
SMAs, for instance CuZnAl, HPV is LCV. But in some others, such as TiNi and CuAINi, HPV composes
two twin-related LCVs (refer to Saburi and Nenno, 1982 for details). Thus, LCV should be potential well
instead of HPV. This issue is not recognized in most of the previous models.

Consider a piece of stress-free polycrystalline SMA as shown in Fig. 1. If its initial temperature is
higher than austenite finish temperature 4y, the whole material is austenite. Suppose that the size of this
specimen is L. We may take a representative volume element (RVE) (with volume V" and boundary 4,) from
it. The size of this RVE is /; (/; < L). This RVE consists of many grains. Assume that all grains in this
RVE can be divided into N categories according to their grain orientation. Corresponding to a given
orientation i, there are M; grains in this RVE. The volume of jth grain with orientation i is ¥}, (with
boundary 4;;), and its size is /, (/; < /). V;; may transform from pure austenite into a mixture phase of
austenite and martensite. For martensite, there are n possible LCVs. Let £ = 0 represent austenite. At one
instant, there are O, of type £ LCV in Vj;. The volume of /th martensite LCV of type k is V;, (with
boundary 4;;;). In this paper all vectors and tensors are in bold. Summation convention for repeated in-
dices is not used.

Following assumptions are made:

1. The total deformation can be divided into two parts, i.e. elastic deformation and deformation induced by
phase transformation.

2. For simplicity, the elastic module (L) of austenite is considered to be the same as that of martensite. Elas-
tic compliance tensor M = L.

3. The distribution of martensite variants in three-dimensional space is random but uniform in every direc-
tion.

4. The specific heat Cy of austenite and martensite is the same.

5. The density p, temperature field 7, heat flow q are uniform in a RVE.
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According to assumption 1, only elastic deformation exists in austenite (k = 0)
€ijo1 = e?/‘oz (1)

Suppose that the eigenstrain due to phase transformation from austenite (grain orientation f) into type k
martensite LCV is Ej;. According to assumption 1, the total deformation is the sum of elastic strain e i and
phase transformatlon eigenstrain Ej;

€ijk1 = e?/kl + Eik (2)

Provided that the specific free energy and specific entropy of austenite and martensite at reference tem-
perature Ty are uy, u)!, k' and A)!, respectively. For V;;, (martensite & # 0), the specific entropy #™, elastic
energy ¢, and specific internal energy u are

T
pr]M(T):hg/l—i—C,/ln(F) (3)
0
b = 3(eu — E) : Lt (e — ER) = 3050 : M : 6y 4)
pugg = u)' + Cv(T — To) + b (5)

On the other hand, for ¥, (austenite k£ = 0), the specific entropy 7*, elastic energy ¢, and specific internal
energy u are

T
pr(T) = + Cyn (7) (6)

0
bior = 3eijor - Lz €00 = 3650, : M 60, (7)
puyor = uy + Cy(T = Ty) + bi01 ®)
Hence for a given orientation i, e;; = 0 and e,y = E;j (k =1,2,...,n) are n+ 1 potential wells in mar-

tensitic transformation.
For any microscopic quantity v, its macroscopic quantity may be defined as

IR R oy i At .

where p, is the macroscopic density of RVE. As volume change is small in phase transformation, the density
change due to transformation can be ignored. Hence it is reasonable to assume that density is uniform
everywhere, i.e. p = p,. Recall assumption 5, we then have

[ fpr iR RS [ ] e i

Jj=

Let

M, n Qik

Vi = Zthkl (11)

=1 k=0 I=1

and
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o=t (12)

Here, ¢, is the volume fraction of all crystals with orientation i, and
N
Z =1 (13)
=1
For any microscopic quantity , its average along one particular orientation i may be written as

<w>“=%///w=%fzng//wdv (14)

Note that

W) =" c)? (15)

=1

For any given orientation i, martensite can be divided into n subgroups according to LCVs. All LCVs of
type k form a subgroup (kth group). All austenite make up a subgroup (0th group). Define the volume
fraction of kth group along orientation i as

W,
Zi = Vf (16)
where
M;  Oijk
Wy = Z Z Vijki (17)
=1 =1

For any given orientation i,

n

ZZ”‘E 1 (18)

k=0

The macroscopic volume average strain is defined by

E = (e) (19)
From Eq. (2)
E=E'+E" (20)
where E° and E" are macroscopic elastic strain and macroscopic transformation strain, respectively, and
E° = (e) (21)
N n
E'=>"¢> zEj (22)
=1 %=0

Similarly, the macro-average of specific entropy (, elastic energy @ and specific internal energy U can be
defined as:

=) (23)
P =(¢) (24)
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U = (u) (25)
Substituting Egs. (3)—(8) into Egs. (23)—(25) yields

pl = {pn) = ZN;Q [z,«o (hOA +Cyln (%)) + Zn:zik (hOM +Cyln (%))] (26)

i= k=1

n

pU = {pu) = Zc,- [z,-o(uOA +Cy(T — To)) + zik(ug/[ + Cy(T — To))

k=1

+ o (27)

1

If the macroscopic stress applied on volume ¥ is X, and the surface force applied on its boundary 4, be-
comes

F=ZXn (28)

where n is the normal direction of 4. It can be proved that
1

¢:(¢>:§E:M:Z+fs (29)

where
1 .

fS = ¢in[ = 7? /\//chnt . StrdV (30)

and
tr_ Ezr if x S Vkl
¢ _{0 if x € Vy S

is eigenstrain of phase transformation, o, is internal stress field caused by eigenstrain in the absence of
external stress field. f*, which may be called “‘stored elastic energy”’, is the interaction energy due to internal
stress field oy,. It can be proved that f* does not directly depend on external stress field X, but only relates
to the microscopic structure of martensite and the distribution of martensite variant. Following internal
variable theory (Coleman and Gutin, 1967), it is reasonable to assume that the behavior of a SMA only
depends on the current volume fractions of martensite LCVs. In general,

S S
f :f (01,02,...76'1\/7 Z115Z12y o+« 9Z1ny ooy ZilyZi2y e oo sZiny « ooy ZNl;ZN27~~7ZNn) (32)

Let

1
f;_s = — 2V //Lcint . slrdV (33)

From Egs. (15), (30) and (33)

N

=Y af (34)

i=1

For simplicity, the coupling effect between different orientation may be ignored, and only the interaction
between same orientation group is taken into consideration. Hence,

A :f;‘s(zilvziZa'“aZin) >

Furthermore, it can be proved that f} is a second order polynomial function of volume fraction. In general,
/7 can be written as
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fP =Azp(1 — zy) 2 Z ZBklszZzl (36)

17k

where 4 and B;; are materials constants, which only depend upon phase transformation eigenstrain. Due to
symmetry of martensite variants, it can also be proved that the number of coefficients By; is less than n. In
practice, 4 and B;; may be measured from macroscopic experiment as mentioned later. In previous models
(for instance, Goo and Lexcellent, 1997; Huang and Brinson, 1998; Patoor et al., 1995, 1998; Gall and
Sehitoglu, 1999), Eshelby inclusion theory are applied to estimate the interaction energy among HPVs. As
mentioned above, in martensitic transformation, LCVs instead of HPVs are potential wells. Thus, the
interaction energy should be expressed as volume fraction of LVCs rather than HPVs. On the other hand, it
is well known that martensite variants are polyhedron as habit plane and twin plane are plane. Eshelby
inclusion theory which provides a nice closed form solution for interaction energy of elliptical inclusion
may not produce good estimation for SMAs.

In Eq. (36), the first term represents the interphase (between austenite and martensite) energy stored in
habit plane, and the second term stands for the elastic distortion energy stored in the interface of twinned
martensite. Rogers (1996) discussed the interaction energy between two martensite variants by means of
non-local interaction method. It is well known that habit plane between austenite and martensite is not full-
coherent interface, while twinning plane between martensite variants are coherent interface. As pointed out
by Seelecke (1996), stored energy in twinning plane is smaller than interface energy between habit plane at
least by one magnitude order. By ignoring second term, Eq. (36) may be written as

17 =Azio(1 = zp) (37)

From Egs. (34) and (37)

f —Z off = ZcAz,o =) (38)

From Egs. (29) and (34)

1 S
¢:§2.M.2+;cif,. (39)
Thus
Uzlz;M;>:+ Y ¢i|zio(uy + Cr(T — o)) + y zx(u)' + Cp(T = o)) + f (40)
2 i=1 k=1
and
i//F udA—i//nEudA—lE'//n®udA—iE~///edV—E'<e>
V Ay V Ay V ' Ay V ’ V ’
=X:E (41)

The Gibbs free energy function becomes



J. Zhu et al. | International Journal of Solids and Structures 39 (2002) 741-763 749

pG=pU—-Tp{—X:E

N n
=pU—Tpl—X: <E°+Zc,~ szEI-,i)
i k
N n
=pU—-Tp{—-E:M:Z—X: (Zcizzikl«:;,§>
+

+§n:z,-k<hoM +Cyln (Tz))} ¥ (ﬁ:cizﬂ:zim;) —%2 ‘M:X (42)

k=1 0 =1 k=0
According to the internal variable theory,
E:—pa—G:M:E+ 3 c,»izikEt.,i (43)
oz =1 k=0 l
Let 5 be the thermodynamic driving force corresponding to internal variable z;
oG of?

By =— =X :EY + (AhT — Au) — = 44
ik P aij ik + ( h u) azik ( )
where
Ah = hg’[ — hOA
Au = ug/[ — uOA (45)

It has been demonstrated by experiments (Huo and Miiller, 1993) that both A% and Au are negative. Since
T° = 2 js phase equilibrium temperature, Au = AhT*® is latent heat upon phase change. Let pn* be local
entropy production due to microstructure rearrangement, the strong form of the second thermodynamic
law may be expressed as

N n
1
pTH = ¢y Euzu — —9- VT >0 (46)
=1

-1 k=
Substitution of Eq. (38) into Eq. (44) results in
Zx =X Ej 4+ (ART — Au) + A(1 — 2z) (47)

As mentioned above, polycrystalline material can be considered at two different levels. At the first level, we
consider the grains whose austenite has the same orientation as one group. Grains belonging to the same
group (as shown by the gray areas in Fig. 1) need not be distinguished, and their macroscopic effect only
depends on their volume fraction ¢; in RVE. At the second level, in each group with the same orientation,
n + 1 subgroups can be classified, i.e. n different martensite LCVs plus one for austenite. Different mar-
tensite variants in the same subgroup (as shown by black areas in Fig. 1) need not be distinguished, and
their macroscopic effect is only determined by their volume fraction, which can be described by f;. In the
case where only one martensite variant is produced in the transformation, if internal friction can be ig-
nored, then constant A represents the magnitude of hysteresis in strain vs. stress curve in an isothermal
loading/unloading test (see Fig. 2). In trilinear model (Abeyaratne and Knowles, 1993; Huo and Miiller,
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€

Fig. 2. The critical condition for nucleation and evolution in phase transformation.

1993), constant A4 is proportional to the slope of second line (refer to Fig. 3 of Abeyaratne and Knowles,
1993; Figs. 4 and 20 of Huo and Miiller, 1993). Thus constant 4 can be measured from tensile test of single
variant phase transformation.

As mentioned above, LCVs are potential wells instead of HPVs. That is to say, in forward phase
transformation, austenite transfers into HPV instead of transition into LCV directly; in reverse transfor-
mation, HPV instead of LCV changes back into austenite. Therefore, the relationship between HPV and
LCV must be provided. For any given orientation i, introducing volume fraction z;; for H possible HPVs,
which has a direct relation with volume fraction of LCVs as

H
Zik = ZVHZ?[ (k:()a 1,2,...,”) (48)
I=1

where vy is stoichiometric coefficient related to volume fraction of HPV z;. For any given orientation the
following equation is satisfied

> =0 (49)
k=0

The stoichiometric coefficient v;; does not vary with orientation, and it is the same as the stoichiometric
coefficient in single crystal. H, which equals to the total number of HPVs in single crystal SMA, does not
vary with orientation as well. v;; and H are solely determined by the crystal structures of austenite and
martensite.

The phase transformation eigenstrain related to volume fraction z;; of HPV is

E; =) wEj (50)
k=1

The thermodynamic driving force corresponding to zj; is
II; =2 :E}, + (AT — Au) + A(1 — 2z) (51)

The second thermodynamic principle may be written as
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N H
1
pﬂsz:QE:Hﬂ;—?qVT>O (52)
i=1 =1

From previous experimental results in the literature (such as Huo and Miiller, 1993), the critical condition
for phase transformation start may be expressed as,

Hz/:H,CIi; (121,2,,1‘1) (53)

where “+”° corresponds to the forward transformation, and “—”’ corresponds to the reverse transformation.
IT; > 0 and II5; < 0 correspond to the critical thermodynamic driving forces for forward transformation
and reverse transformation, respectively.

On the other hand, the evolution equation for phase transformation may be expressed as

I, = I15" = 2(/1 + uzéo)zj, for forward transformation

.. ' (54)

I, =15 = 2(2 + uz%)éj.‘, for reverse transformation
il

Here, p is introduced to describe hardening behavior. In forward transformation, IT;, increases, while in
reverse transformation, I1;, decreases. As soon as nucleation starts in forward transformation, IT;,” moves
back to its maximum value (—II,). When reverse transformation starts, IT;;" returns back to its minimum
value (I1y). Here, I1, A and u are non-negative material constants. As shown in Fig. 2, it is apparent that
the sum of 4 + II, represents the hysteresis in phase transformation, where A4 is produced by the energy on
the interphase between austenite and martensite, and I, is due to internal-friction in phase transformation.
Lexcellent et al. (1996) and others take 4 = 0, so hysteresis is considered to be only the result of internal-
friction in phase transformation. On the other hand, Huo and Miiller (1993) considered I1, = 0, i.e. the
hysteresis is due to interphase energy only. Thus, point A is coincident with point C, and point B superposes
with point E. If u =0, (1 — 4) is proportional to the slope of CD. Whether the material appears to be
hardening or softening depends on (1 — 4) rather than only (—4). This conclusion is different from Goo
and Lexcellent (1997) and others. The real phase transformation path is along non-equilibrium path CD
instead of equilibrium path AB. It means that the entropy is always increased with the phase transfor-
mation progressing. For a material with harden behavior, we usually have relation

L> A (55)

If 1y =0and 1 = u = 0, Egs. (53) and (54) result in the same form as trilinear model. In general, u < 4. So
at the beginning of phase transformation, evolution curve CD is almost a straight line. When phase
transformation are nearly completed, z; is close to 0. First formula in Eq. (54) can be approximately
written as IT; = Hf,+ = 3—‘0‘2;}. It is similar to Tanaka’s model (Tanaka et al., 1994). From Eq. (54), for
forward transformation

Zj d

. Zjo : 2
Hi *:71711]1 = Hc+ >0 56
12 2()le~0+,u) 144l 4(/LZ[() +’u) dt( il ) ( )
while for reverse transformation
z* . z* d
Hi'f‘:—l’Hin:—’l—H9‘2>O 57
Zi = 30 + 0 = 30 @ W) (57)

So Eq. (52) can always be satisfied.

From Egs. (53) and (54), we can get volume fraction of each HPV. Subsequently, eigenstrain of phase
transformation can be solved from Egs. (48) and (22). Substituting Eq. (48) into Eq. (22) and combining
with Eq. (50) yield
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H N H n
«ptr * tr) _
§ vz Ey = § Ci § Zy § vk | =
i=1 =1 k=0 i

N
i=1

Ci ZZ?ZE?Z (58)

H
=1

1e.,

E" = Zc,- sz/E;/ (59)

Provided that the unit normal vector of habit plane is n;;, the phase transformation eigenstrain can be
written as
Ciy=I+n;®by)(I+b; @ny) (60)
Thus
E, = %[Cil -1 = %[(nil @by +b; @ny) + b?](nil & nil)] (61)

Generally speaking, transformation eigenstrain includes not only shear deformation, but also a small
amount of volume change. Therefore, b;; is normally not perpendicular to n;. Decompose vector b;; into
two parts (Fig. 3): one is in n; direction, and the other is vertical to n;

b, = gm;; + &n; (62)
where, g is the magnitude of shear deformation, and ¢ is strain due to volume change. Hence
:} = gP[] —+ &ny; X n; (63)
where
P, =1im; ®ny; +n; @my) (64)
and
e=¢ +3(¢° + ) (65)
b,
il € nil
gm;
nilT
—
m

Fig. 3. Eigenstrain in phase transformation in HPV: b;; = gm;; + en;;.
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By substituting Eq. (61) into Eq. (51)

H,‘] =718 — @1‘]8 + (AI’ZT — Au) +A(1 — 220) (66)
where
T =X:Py (67)

which is the resolved shear stress, and
©;=-n;-X-n (68)

is the equivalent pressure. So @;¢ represents the effect of asymmetry of thermodynamic driving force for
phase transformation in tension and compression.

3. Simplified model

In the previous section, a thermodynamical constitutive model for polycrystalline SMAs under any
loading condition is established. For further simplification, following assumptions are applied,

(a) A polycrystalline SMA includes a lot of randomly but uniformly distributed grains, and the material
is isotropic. So we can suppose that N orientation groups are uniformly distributed. Thus, the volume
fraction of each orientation group is the same, i.e. ¢; = %(z =1,2,...,N).

(b) The interaction between different HPVs is ignored, i.e. u =0 in Eq. (54). And suppose that the
mechanism of phase transformation is the same as that in single variant phase transformation. So each
orientation group has H possible phase transformation systems, and they are independent on each other.

From assumptions (a) and (b), we may directly divide a RVE into R orientation components, where
R = N x H. The volume fraction of each orientation component in this RVE is 1 /R, and the transformation
mechanism of each orientation component is the same as that in single variant phase transformation.

(c) The volume change in phase transformation is ignored, i.e. ¢ = 0 in Eq. (63).

From above assumptions, a RVE consists of R orientation components. Let martensite volume fraction
of orientation component k be z;, then the volume fraction of austenite is z;y = 1 — z;, Eq. (59) becomes

1 R
E'=—_g) zP, (69)
R k=1
where
Pk = %(mk Xn, +n Q mk) (70)

Here, n, and m, are distributed uniformly on a unit spherical surface.
Resolve shear stress as

u=X:P; (71)
Then Eq. (66) may be written as

I, = 11g + (ART — Au) — A(1 — 2z;) (72)
The critical condition for phase transformation start becomes,

o, =1, (k=1,2,...,R) (73)

And the equation for evolution of phase transformation becomes
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(74)

IT, = II" = 2)z;  for forward transformation
II, = II; =2Jz; for reverse transformation

As long as the martensite volume fraction of each orientation component is determined, the total strain can
be calculated by

1 R
E:M:Z+§gszPk (75)
k=1

4. Numerical simulation

In this section, numerical simulation of a Cu-Al-Zn—Mn polycrystalline SMA round tube is presented.
The simplified model proposed above is used to simulate the mechanical behavior of this tube. The nu-
merical simulation is based on the experiments reported by Sittner et al. (1995). The thin wall specimen for
the experiments were made of Cu-10Al-5Zn-5Mn (wt.%) polycrystalline SMA produced by Fulrukawa
Co. with external diameter d.,, = 8 mm, and internal diameter di,;, = 5 mm. The specimens were finally heat
treated at 873 K for 2 h and quenched in ice water. The measured grain size d < 120 um. Transformation
temperatures were obtained by electric resistivity measurements. The main material parameters of this tube
is listed in Table 1 (refer to Fig. 1 in Sittner et al. (1995) for details). A Shimadzu AG-10TS testing machine
designed for combined tension—torsion tests with a closed loop servo-control analog system was adapted
for simultaneously applied cycle tension and torsion in force or strain control using PC. A special combined
strain extensometer was calibrated to avoid cross effects among tension and torsion in the interval of used
extensions and angles of rotation. Combined tension and torsion load tests were performed at room
temperature 7 = 285 K in strain or force control mode. Since ambient temperature is higher than austinite
finish temperature 4r of the specimen, it was pseudoelastic deformation under tension plus torsion loads.

Sittner et al. (1995) introduced new definitions for equivalent shear stress T and equivalent shear strain 7.
The relationship between equivalent shear stress T and the engineering shear stress 7., and the relationship
between equivalent shear y and engineering shear strain 7y, are,

T = C*Treal (76)

Y= yreal/ce (77)
where

¢ =1.23 (78)

=221 (79)

In order to compare the simulation results with the measurements in Sittner et al. (1995), the equivalent
shear stress and equivalent shear strain reported by Sittner et al. (1995) are used. Two types of experiments
were reported by Sittner et al. (1995). In the first type, it was strain control. Corresponding to the con-
trolled “strain path” (e, 7), the evolution of the resulting stress (o,7) were measured which are called as

Table 1
Parameters for Cu-Al-Zn-Mn reported in Sittner et al. (1995)
Ey (GPa) Gy (GPa) T (K) M; (K) M; (K) 45 (K) A (K)

53.0 19.5 285 239 223 248 260
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“corresponding stress path”. In the other type, the control parameter was stress. The corresponding strains
which are called as the “corresponding strain path” were measured.

In order to use the proposed model, following parameters have to be determined:

(1) The shape change parameters in martensitic transformation, g, &: In simplified orientation component
model, ¢ = 0. g can be calibrated directly from the magnitude of macroscopic deformation in experiment as
explained later.

(2) Mechanics parameter, L: The elastic constants of austenite and martensite are the same. The values of
elastic modulus and shear modulus are listed in Table 1.

(3) Thermodynamic parameters: Ah, Au, A, I1y, A, As, A, My, My, T9.

Provided that a single crystal specimen is stretched under a uni-axial load. The direction of load is
carefully chosen, so only one particular martensite HPV, which is favorable by applied stress, is produced.
Suppose that the normal direction of habit plane of this HPV is n, and the shear direction is m, then loading
direction is along (v/2/2)(n 4 m). Hence we have the maximum transformation strain & = (1/2)g. For Cu—
Zn—Al-Mn, ¢, is estimated as 0.16 from Fig. 2(a) of Sittner et al. (1995). Eq. (72) becomes

D=0 -6+ TAh—Au—A(l —22) (80)

The austenite and martensite start/finish temperature 4, Ar, M, My and room temperature 7 are shown in
Table 1.
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Stress free state gives o = 0. If the material is austenite (i.e. z = 0) and temperature equals to martensite
start temperature (i.e. 7 = M), then II = II,. If the material is martensite (i.e. z = 1) and temperature equal
to austenite start temperature (i.e. T = A4;), then IT = —II,. Substituting them into Eq. (80) we obtain

M Ah — Au— A = I,
ASAh — Au +A4= —H()

From Eq. (81) and the definition of 7¢? we obtain

(81)

(82)

Suppose that at ¢ = ¢, the martensite start temperature is 7;, while at ¢ = g, the martensite start tem-

perature is 75. Substituting them into Eq. (80) and taking subtraction, we obtain

Ah = — o2 =00

— &
(L-1) "

(83)
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From Egs. (82) and (83)

Au = T9Ah = — (AS +MS)(O-2 - 61)
2T —Ty)

&o (84)

From Eq. (81)

(AS - Ms) o (As - Ms)(UZ - 01)
2 Ak = 2(, - Th)

A+ H() = — &0 (85)
From Eq. (85), 4 + I, can be determined. But the exact portions of 4 and II, depend on the material.
Roughly
— (As—M5)(a2—01)
A=k =57y e

(=M )(02-01) (86)

H() = (1 — k()) A1) &
where 0 < ky < 1. In fact, the value of 4 can be determined by experiment in which single martensite variant
is induced (see Section 4.3 in Huo and Miiller, 1993 for details). As shown in Fig. 2, If the phase equilibrium
path AB is obtained in uniaxial tension test in which single martensite variant is induced
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(oA — oB)ég

4= 2¢el

(87)
where ¢} is phase transformation strain at point B, which equals to total strain subtracted by elastic strain
0B

eg:sB—sfg:sB—f (88)

Numerical simulation shows that the effect of the variation of &, in polycrystalline SMA is small. In the
absence of experimental result in which single martensite variant is induced, here we take &, as 0.1.
By substituting Eq. (80) into Eq. (74)

G-eg+ TAh+ 242 =2)z (89)

In the case where no external stress is applied, at T = M;, z=0; and at 7 = M, z = 1. From Eq. (89),
A=A+ Ah(M; — M;)/2. Similarly, at T=4,, z=1; and at T=4;, z=0. From Eq. (89), 1=
A — Ah(4r — A;)/2. For simplicity, we may take the average value of 1 as

[(4r + M) — (45 + Mr)]

A=A+ (0'2—0'1)80 (90)
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According to the experimental results in Sittner et al. (1995), we take T = M, 6; = 0,and 7, = T = 285 K,
g, = 239 MPa.

The numerical results are compared with experiments in Figs. 4-13. As we can see, the simulation results
are consistent with the measured results reported in Sittner et al. (1995). The numerical simulation shows
that the proposed constitutive model is reliable in prediction the thermodynamic behavior of SMA under
various complex loading conditions. The reason why there are some difference between simulation and
experiment can be explained by the possible non-recoverable deformation (such as crystal slip, etc.) in the
material.

Proposed model can also simulate shape memory effect. However, due to the lack of good experiment
result, no simulation and comparison are presented here.

5. Conclusion

In this paper, a thermodynamic constitutive model for single crystalline and polycrystalline SMAs under
complex thermomechanical load is presented. In this model, the material is studied at two different levels. If
a SMA is austenite, it consists only austenite grains, which can be divided into different groups according to
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their grain orientations. When undergoing phase transformation, each group can be further divided into
different subgroups according to different martensite variant induced. The volume fraction of each sub-
group is chosen as internal variable to describe the evolution of phase transformation in the material.
Volume average and variant combination methods are used in deriving the constitutive model. The
transformation mechanism in each variant is considered the same as single variant phase transformation,
no matter how complex the external loading condition is. This model can describe the thermomechanical
behavior of SMAs under both proportional/non-proportional load, and cyclic load. Subsequently, a sim-
plified version, i.e. orientation component model, is proposed for polycrystalline SMAs. This simplified
model is used to simulate the response of a Cu—Al-Zn—Mn polycrystalline SMA round tube under pro-
portional and non-proportional loads. Only one set of material parameters is used in all simulations. The
results are consistent with experiments, which proves that the proposed model is reliable and convenient.
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